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1 Abstract
,

In -this paper 12 blind transformation procedures' are.applied to

4* 18 data Sets. The results of the analyses indicate that the orthotran
1--11 r
-CT' transformation solution is not restricted to particular types of data as

C1-) 4

are so many other transformation solutions.'

fl
The evidence presented in this paper strongly suggests that the

orthotran solution must be considered as the best blind aria ytic oblique

transformation procedure presently available for general use That is,.

oo

O

the orthotran solution can be-usedby the average educational researcher

Without the bothersome consideration of the general nature of the factor

matrix to be transformed.

Paper presented at the annual meeting of the American Educational

Research Association in Washington, D. C.--April, 1975
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The major objective of this study was one of im4eitigating Ore data
4

generalizabiJity of a new'blind transformation procedure, the orthotran solu-

tion (Hofmann, 1975). The orthotran solution is intended,to be a "workhorse"

transformation solution. In order to function in this capacity the orthotran ,

must be operational and available for immediate. use, with satisfactory results,

without the bothersome prior considdration of the general nature of the factor

matrix to be transformed.

The actual procedures for realizing this objective are much like those

for validating a test, ai'least conceptually. One validity question is that

of determining Fivi well an orthotran solution will approximate a subjective

solution. A second validity question is that of determining whether the

quIlity of an orthotran solution-is situation specific. A third validity

question is one of determining whether the orthotran is really "better":than

existing transformation procedures in terms of approximating subjective solutions.

Clearly the most *portant consideration is that of data criteria. Eighteen

different factor matrices are used in this study. For each factor matrix an

ideal.subjective 'solution has been determined either by the author reporting

the factor matri or by a person recognized by the data author as being an

excellent "rotato ." Solutions were determined by Swineford, Lawley, Thurstone,

Holzinger and Horn as well as by others.

-Including the orthotran, 12 blind analytic transformation prpcedures are

applied to each of 18 datk sets. The transformation solUtiOns are summarily

described by four indices. One of the indices is new and is developed in-
s

this paper in order to provide a relative index of the adequacy with which a

blind sbluticin approximates a subjective solution.
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The first part of this paper provides brief descriptions of the 12

blind transformation procedures. The second,section describes the four

descriptive
indices.. In the third section the 18 data samples are generally

described with regard to a ,conceptual universe of fac6r solutions. Also

included in this section is a brief description of each data sample. The

fourth section provides a discussion and summary of the analyses.:

, Blind Analytic ProCedures'..-

The blind analytic procedures to be discussed in this paper can be

subdivided into four general categories:

(a) the class of oblimin solution;

(b) the class Of orthomax solutions;.

(c) the Harris and Kaisersolutions;

(d) the orthotran solution.

Whereas the oblimin and orthomax solutions are computed directly as a .fUnckion

of either maximizing or minimizing some mathematical criterion, the Harris

and Kaiser soli ions, gaining in popularity, are two emiprically. baseglsolutioes,
0

while the o hotran solution is determined primarily, through the Utilization of

principles of artificial intel7'igence.

The class of orthomax solutions are blind orthogonal sollitions; the

class of oblimin solutions tend to be blind oblique sOfutions as do the Harris

and Caiser solutions. The orthotran tends to determine blind oblique solutions

but will, by necessity in certain situations, determine solutions identical or

very similar to those defined by the class of orthomax solutions. All solutions

are determined as "normalized" solutions, variable vectors assumed to be of

unit length during the computation process, as opposed to "raw" solutions

inasmuch as raw solutions just do/not appear to determine as compelling simple

structure solutions as do the normalized solUtions.

4
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Orthomax Solutions. The class of orthomax solutions all seek to'

determine an orthogonal solution that will maximize some specific form of the

genetal orthomax criterion (Mulaik, 1972) which is in avery special sense

a "weighted" form of the sum of the t column( variances of the squared factor

coefficients.

It is the weight value, W, selecte-thc determines'the specific type

of orthogonal solution computed.' The quartimix criterion (Carroll, 1953) is
er

(
defined by (w=0), the varimax criterion (Kaiser, 199!8) is defined by (w=1),

the equamax (Saunders, 1962) is defined 6,0w=r/2) and is identical to the

varimax for*a two factor solution. Although w is specifi9ally defined here

it can, technically, be set at any/value. Th*G.study investigated only the

. values of (0, 1; r/2) as they represent the, prominent ehoices selected for use

in blind orthogonal solutions.

4

Oblimin Solutions: The class of oblimin solutions are subdivided into

two categorles: the direct oblimin and the indirect oblimin. The distinction

between the two being that the manipulated matrix,_ the interpretatilie matrix

;tof interest in the direct oblimin solution, (`jennrich and Sampson, 1966) is the.'

primary pattern matrix, the set of regression coefficients for estimating

variable scores from factor scores. The'manipulated matrix in the indirect

oblimin solution (Carroll, 1957; Harman, 1967). is the,reference structure matrix.

Once a reference structure matrix has been determined it is usually converted

to a primary pattern matrix for interpretation.

The objective of the oblimin-type solutions is to minimize a criterion

which is in a very special sense a weighted form of the r(r-1)/20column

covariances of the squared entries of the solution matrix, either a primary

pattern matrix in the case of a direct oblimin approach or a reference structure

matrix in the case of an indirect oblimin approach.

5
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As with the orthomax criterion the choice for w determines the spekeiile

solution computed. For,the indirectsolution (ow=0) defines the'quartimtn,

1 ,

criterion; (w=.5) defines the biquartimin criterion,; (w=1) the covarimin

criterion (Harman, 1967). For the direct oblimin, the choice of weights.
, Y

seems to be in need of clarification, byt the most prominent weights-(Harman

1967) would seem tobe (0, -.-05, -1.0) with thzero weight being associated

with the direct quartimin,(Jennrich & Sampson, 1966). As noted by Harman (1967)

there seems to be little relationship betWeenthe Weights of the direct and in-
o

0

direct oblimin with regard to the "quality of the solution computed.,
law

Although the range.of w is somewhat more restricted (Mulaik, 1972) when

used with the class of oblimin solution, than with the class of orthomax

solutions there is still a considerable range of choices. The two sets of

weight' previously (o, -.5, -1; 0,..5, 1), were selected for use in

defining the two types of oblimin solutions. Harman (1967) specifies the

consegences, sometimes quite, grave, of selecting values outside of the range

of those used in this study...

Harris and Kaiser Solutibns. The Harris and Kaiser(1964) solutions

are two sets of empirically based equations, derived from the general Harris

and Kaiser (1964) orthoblique equations, for the quick and sometimes highly .

efficient computation of oblique factor solutions.

The two solutions are spe'cified as the independent cluster solution and

the "A'A prOportibnal to L" soltjtion, henceforth (A'A) solution. The correlatiqns

are reproduced from the initial factor matrix and then resolved into r unit

. .

length eigenvectors and associated eigenvalues. The independent cluster

solution, primary pattern matrix,-is a column resealing of a raw quartimax

210
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rotation applied to the eigenvectors. The A'A primary, pattern solution is

defined ay (a) rescaling the columns of the eigenvectorsby the fourth root,

of the eigenvalues, (b) applying a raw quartimax rotation to the rescaled

-eigenvectors rescaling the columns of the rotated matrix (Harris and

Kaiser, 1964).

Orthotran Solution. The orthotran solution (Hofmann, 1975) is a type

of ad hoc solution based upon the general orthoblique equations of.Harris and

Kaiser (1964). Utilizing principles of artificial intelligence, specifically

heuristic search procedures, the orthotran approach determines a 'solutfon,

primary pattern, from an infinite solution space.

Generally, the orthotran solution functions "in conjunction with some

orthogonal transformation solution. For the purposes of this study it was

used in'conjunction with a normal varimax solution.as this is the orthogonal

solution suggested for use as a blind procedure by Hofmann'0975).

The orthotran has been programmed and is presently being considered for

inclUsion in all of the major published computer, packages. Ea"lier versions

of the orthotran, the obliquimax transforMation in particular (Hofmann, 1970),

have been used since 1970 with empirical'applicatiOns. already in. the published
.t

literature.

Descriptive Indices

Four descriptive indices are utilized in, this study. TWQ 'of the indices"

are not really new, a third index has just recently been published while the

. fourth index is being described for the first time in this paper: The iew
',f

index is descriptive of the degree of congruence one solution his with another.
.

.

. . .. .

N a
- .

The other three indices represent various ways of summarily describing a factor

transformation solution.L

ti
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Hyperplane 'Count:. 'The hyperplane. Count is an attempt-to quantify a

factor solution by describing it in terms of the number of,zero coefficieft in

the solution matrix. It is just the number of coefficients less that .11 in

magnitude for any given factor solution. It is based-upon Cattell's (1966)
.1;0. .

notion that for any given sample of variables, we should expect any"true

natural influence to affect only a few of them." Cattell states that there

sh?uld be" a. transformation position for each,factor such that a majority of

the variables have.zero loadings.

Unlike the other three indices used in this study the magnitude of the

hyperplane count is a function'of both the.number'of variables and number of

factors. it may be used for comparisons of different solutions to the same

factor matrix.

Average Absolute Factor Intercorrelation. This index unlike the other

indices included in this study is defined as a function of the primary factor

' intercorrelation matrix, as opposed 'to the primary pattern matrix. It serves-

as an index,of the average obliquity, of a factor solution.

To compute this index the absolute value of each non-diagonal correlation

in the primary intercorrelation matrix is'converted to Fisher z. These values

'are then averaged. The average Fisher z is then cpnverted back to a correlation,

hencefOrth average factor intercorrelation.

This index is a stable index, being independent of the number of variables

and the number of factors, and provides a descriptive index for use in comparing

certain aspects of primary factor solutions within and across different data gets.

Average Variable Complexity. This index is defined as a function of the
-*

rows of the primary pattern matrix. In'the linear description of a given variable

any number, r, of common factors may be involved as long,as (r <°n). This

r-
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number is referred to as the complexity of the variable. Specifically, ariable

complexity refers to'the number of. factors involved in the "row - wise "' description

of a variable in a factor matrix (Hofmann, 1976).
-,

When there is one substantial entry in a row of a factor matx, all
A

other row entries being zero, the complexity of tl3e variable associated with the

row is 1. The average variable complexity for a factor soluti ion is just the

average number of common factors needed to describe the n variables.

This index is a stable index, being independent of thenumber of variables

and relatively independent of the number of factors, usually the average variable

complexity will range from an absolute low 41, a true independent cluster

solution, to a high of 2.5 to 3.0. Thus, this index is a des'cri"ptor appropri-

ate for use in comparing factor solutions both within and between different

data sets.

Index of Congruence. This index is intended to be used as a quantitative

summary of the pattern similarities ofthe coefficients of two (nxr) solution

matrices. It is based pon Burt's coefficient of congruence (Cattell, 1966). -

(9The formilajordeterm.ning the coefficient of congruence between a'factor in

Ole matrix and a factor in a secd d matrix is reported7by Cattell (1966, p. 196).

The coefficient of congruence serves as an index of the degree of pattern

similarityof two factors, having a maximum upper limit of 1.00 and lower limit

of -1.00.
or

The index of congruence is a single number with a maximum upper limit of

1.00 and a lower limii,of 0. It is an index of the degree of pattern similarity

one matrix has with another. In this study it is an'index of the adequacy

with which a blind solution approximates a subjective solution. It is. computed

according to the following steps:

9
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(a) compute all possibie congruence coefficients of the subjective sol-
o

ution witVtself.(factor 1 with itself, with factor 2 and so on);

(h) obtain the,he sum of the absolute values of these congruence coefficients
A

(they will represent the absolute sum of the congruence coefficients

of the ideal blind solution with tbe Subjective solution);

(c) compute all possible congruence coefficients of al blind solution with

the subjective solution;

*(d) Obtain Fiesum of the absolute values of these congruence coefficients;

(e) determine the absolute.difference between the the sum obtained in

step (b) and'step (d) and call this "error of fit;"

(f) express this absolute difference as a ratio to the total of step (b)

and call it relative error;

(g) subtract the value determined in step (f) from unity to determine thestep

relative accuracy and call the resulting number the index of-congruence.

This index will be unity when a blind solution is identical to the subjec-

tive solution. Unfortunately, this index is subject to the same limitation of

the coefficient of congruence.' It can give a value of unity for patterns of

. --
identical shape even though the coefficients may have .different levels of

magnitude. Alsa the ideal' sum may be obtained by more than the one ideal set

of congruence coefficients. However, to the extent that more than two factors

are utilized the latter problem is reduced,

This index is a stable index and may be used for comparisons of different

solutions to the same factor matrix. That blind solution having the highest

index of congruence for a particular data set will be assumed to be theebest

blind approximation to the subjective solution of that data set.

Data Selection/

For, illustrative purposes 18 data sets are utilized in this study. Of

10



particular concern is the representative nature of these data sets. Although

only intuitive it is felt that t eSe 8 data sets may be fairly representative

of the universe of possible factor matrices with regard to variable complexity

and average intercorrelations. A variety of characteristics are manifested by

theSe data: number of factors, variable complexities, hyperplane counts, average

factor intercorrelations, heterogeneity of communalities, error factors, bi-

polarity of factors and perhaps still other important yet unrecognized character.;

istics. All data sets selected have associated with them solutions that were

determined subjectively. These subjective solutions may be thought of as beimg

ideal or criterion solutions.

With two exceptions the data are grouped into two general types: plasmodal

and real. PTasmOdal data (Catteil, 1966) are generated.by physical models

having known and easily identified formal propertties similar to those of

mathematidal models, but they are subject to measurement error and have other

physical realities not present in abstract mathematically determined data sets.

. .

The nature of such data is both well understood and well behaved. sk

, t
The real data are based upon observations on real people Nith less than

perfect measuremeit instruments and as such they are prone to nOmerous predictable

and unpredictable problems. It is of the utmost importance to include such data

in any generalizability study as jt is the satisfactory "handling" of a variety,

of real data that suggests the generalizability of a 'transformation procedure.

When a procedure performs poorly with plasmodal data one can usually identify

the cause of such poor performance through an intimate knoWledge of the nature

of the data. Unfortunately.poorOerformance with real data is not so easy to

explain. .For this reason satisfactory performance of a blind *ansformation

procedure with.a variety of. real data is perhaps more laudable than. satisfactory

performance with pTasmodal or true artificial data.

F



Table 1

Identification, Descriptions and Source of Illustrative Data Sets

Data Number \

Type' Variables Factors Sainpleb Source

Data Identification

(1) Thurstone's Cylinders Plasmode

(2) 8 Physical Variables

(3) Swineford

(4) Lawley

(5) 13 Psychological'

(6) Cups of Coffee A .

(7) Cups of Coffee B

a.

(8) Thurstone's Trapezoids

. .

(9) Box Problem

(10) Horn

(11) Coan's Eggs

(12) 24 Psychological .

(13) Thurstone's orthogonal

(14) Pemberton .

Real

Real
. 9

Real 9

.

Real 13

Plasmode 15

Plasmode 15

Plaswode

Plasmode

15

20

6

Real 20

Plasmode .21

Re'al 20

Artificial. 24.

Real 25

12

27" Thurstone, 194
p: ilq

2 305 Holzinger and
Harmaff,1941,p.

504. Swineford,1948
p. 17-18

I

3 73 Lawley and
Maxwell, 1971,

3 145 Holzinger and
.Harman,1941,p.

6' 80 Cattell and Sul
. van,1962,p.191

'V 6 80 % Cattell, and S
vari,1962,p.191

4 32 Thurstone,1947,
p.432 1 .

3 20 ThUrsfone,1947,
p.136

5

6

4

lit 5

172 Horn,1963,p.127

100 Coan,1959,p.158

145 Holzinger and
Harman,1941,p.2

Thurstone,1947,
p. 254

1,54 Pemberton,1952,
. . p. 276
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a
A

Table(1 IcofitiTued)

.Identification, Descriptions and'Source of Illustrative Data Sets

Data Identification Data Number

Type , Varipbles Factors Sample Source,

a (15) Ball Problem Plasmode

(16) Degan Data .'
,-

Real

.

(17) Kelley's Data Real

(18) Hofmann's Oblique

of

-

32 4 80

32 - .9 367

.'

40 --, 11 442

8 2

/
,

.

Cattell and
. Dickman,1962,p.

Dqgan, 19. 52,p:3

Kelley,1964,p.3

'13

.s
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Two of the'data sets are artificial, from the point of view that the

factor-solutions weremathematically determined. Both artificial data sets

were generated in,order to define extreme average factor intercorrelations.

One data set was generated specifically for this'study in order to,define an

average factor intercorrelation of .99.(It can be obtained by request from the

author). The second data set was generated by Thurstone (1947) to define an

average factor intercorrelation of zero.

The data are identified and partially summarized in Tablej. Theirsub-

jective solutions are summarily described with the descriptive indices in Table

2. All descriptions for the subjective solutions are based upon primary pattern'

matrices.

Conceptual Universe of FactotSolutions. As previously noted two of *the

descriptive indices Used in this stud.); may be used,for intersolution comparison:

average variable complexity and average factor intercorrelation. In Figure 1

.

the 18 subjective solutions have been plotted as points in a two-space with
.

,,.

'avera'§e variable complexity, and average factor intercorrelation servingas

coordinates. The abcissa is defined according to average variable complexity

and ranges from 1 to 27. The ordinate is defined according to averagp, factor
I I

intercorrelation and ranges from 0 to 1.0. .These two'indices are reported in

Table 2 for the subjective solutions.

Note that in Figure 1 the solution points tend to be bounded by.a hyperbola

that becomes asymptotic to the two axes. The implication of this bound seems

clear. Generally speaking the greater the obliquity of the solution the lower

isithe variable complexity, alternatively, the more complex solutions tend

to be assoc,iatewith relatively uncorrelated factors. A majority of the sol-

utions tend to have an average correlation less than .50, this observation is

14
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supported by Rummel (1970) and Cattell (1966). Also it may be noted that a

majority of the solutions have'an average variable complexity less than 2.0.

. The hyperbola has been included in Figure 1 and that portion of the figurre

between the axes and the hyperbola may be thought of as a conceptual universe

of factor solutions. Most properly determined factors solutions would fall

within that bounded region.

Discussion and Summary of AnalySeso

In conducting the analyses of this study the following sequence of steps-
,

was adhered to for each data source:

(a) an orthogonal factor matrix was obtained from the literature source,

usually a centroid solution, with the exception-Of data set 18

which was defined mathematically in a principal axis form determined

from an artificial factor solution matrix;

(b) the'orthogbnal maoCri)c wasssubjected systematically to'all 12 blind

transformation procedures;

(c) 'the subj ctively determined solution wX obtained from the literature

source and if it was.an oblique solution reported as a reference

structure so. tion it.was rescaled to a primary pattern solution

following Thur tone (1947);

(d) for each soluti n'the average primary intercorrelation, the hyperplane

count, and,the average variable complexity was determined (see Table 2);

(e) each blind transformation solution was compared to the subjective solu-
.

tion to determine the index of congruence. (Final cbiumn of Table 2).

In summarizing the results'for discussion purposes the single most important

consideration was felt to be one of addressing the adequacy with which the blind

solutions approximated the subjective solutions. Tb this end for each data

set'theldghett index:Of congruence, the smallest overall percentage of relative

16



4, Table 2. Summary

Hyper- Average Index

Average plane Variable of,

Data Transformatton Factor r Count , Complexity. Congruence
,

1 , Direct 'w=0 30 1 1.23 .85

Oblimin w=-.5 124 1 1.23 .82

,

-

w=-1
r -

20 3 1.23 .80

Indirect w=0, '48 0 1.22 .79

Oblimin w=.5 27 0 1.24 .88

W=1
.

00 3, 1.32 .99

QUartimax 00 0 1.24 .87

Varimax 00 3 1.32 .99

A'A 23 '1 1.49 .96

Indep. Cluster 43 0 1.21 .79

Orthotran 05 3 1.31 .99

Subjective 00 14 - 1.30

Direct w=0 47 8 1.01 1.00

Oblimin w=-.5 37 7 1.02 .94

w = -1 -" 34( 6 1.02 .92

Indirect w=0 01 0 1.62 .58

Oblimin w=.5 27 4 1.04 .89

w=1 00
, ,

0 1.14 .78

Quartimax 00 0 1.14 .78

, Varimax , 00 0 ..ii,1.14 .78

A'A .25 0' ].78 .60

Indep. Cluster 48 8 1.01 1.00

Orthotran 46 8 1.01 1.00

Subjective 48 8 1.01

3 Direct w=0 30 14 1.16 .96

.-' Oblimin w=-.6 22 14 ,1.16 .98

w=-1 18 13 1.)6 1.00.

Indirect w=0 42, 13 '1.15 .9io

Oblimin w=-.5 19 14 1.17 100'

w=1' 10 l' 5 1.17 .75.

17
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Table 2 Summary (continued)

Hyper-

Average 'plane

Data Transformation Factor r Count

Quartimax

Varimax

Equamax 4

A'A

Indep. Cluster

Ortho ran

S}, jpctive

Direct w=0

Oblimin 'w=-.5 ,

w=-1

Indirect w =0

Oblimin .wt,.5

w=1
.

uartimax

Varimax
.

'.?..i.

.

Indep. Cluster,.;

Orthotran

Subjective

5 Direct w=0

Oblimin w=-P.5

w=-1

Indirect w=0.

Oblimin. w =.5

00 12

00 , 12.

00 ^ 7

20 5

38 13

37 13--

74 15

48 , 23

49 19

45

21 17

16 18

31 12 .

26 .11

24 11

45 11

20 9

09 2

Q 00
43 .

00 3

00 2

20 ]

40 13

' 39 11

32 11

w=1 Factor Collapse

Nartimax 00 16

Varimax 00 15

Equamax 00 7

18

,Average Index

Variable of

Complkity, Congruence

1.19 .94

1.34 .80

1.41 .91

1.54 .71

1.16 .95

1.16
.

.98

1.10

1.20
. .81

1.25 .79

1.30 .76 t

1.14 ,88

1.17 " .91

1.25 .82

1.28 .82

1.88 .62

1.17 .99

1.19 .96

1.19 .94

1.17 .99

1.21 :91

1.44 .70

1.34
,

.76-':

1.34 , ,' 7,,
1.34 .76

2.34 .54

1.16 .94

1.16 .911N,

1:18
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Table 2. Summary (Continued)

Hyper-

° Average plane

Data Transformation Factor r Count

5 A'A 25 12

Indep. Cluster . 74 15

OrAotran 22 19

Subjective 50 19

6 Direct w=0 09 58

Obrlimin W=-.5 10 54

w=-1 09 . 55

Indirect w=0 49 24

Oblimin w=.5 07 55
,t
w=1 Factor Collapse

4 Quartimax 00

Varimax 00

Equamax 00
..-

A'A 07

Indep. Cluster 14

Orthotran 12

-Subjective 10

7, Direct'. w=0 ,12

Oblimin w=-.5 1J

W=-1 10 .

53

52

50

22

51

54

52' r

56

57

58

Indirect w=0 Factor Collapse
!

ObliMin W=.5 faLctor Collapse

w=1 'Factor Collapse

uartimax

Varimax _

Equamax

A'A

Indep. Cluster I'

Orthotran

Subjective
.

.'

Q 00 48

/ 00 49

00 48

081, 29

20 49

57

13 50

19

'L.

Average Index

Variable' of
Complexity' Congruence

1.69 .69

1.48 -.90 -

1.18 .93

1.14

- 1.4) / .89

1.47 .96

°
IP

1447 .96

2.35 -.98

1.39 .99

1.40 .99

1.41- .97

1.44 .98

2.28 .73

1.41 .87

1.36 .94

1.38

1.32 .93

1.34 '.98

1.35 1.00

-,

..

1.38 .96

1.38. .90

1.41 g.84

2.4 .68

1.39 f.83

1.34 11.00

1.39



Table 2. Summary (Continued)

Hyper-

Averag6 plane

Data Transformation Factor r Count
.

8 Direct w=0 28 24

Oblimin w=-.5 26 25

.,. w=-1 25

, Indirect w=0 Factor Collapse

Varimax 0 15 102 .89

Oblimin w=.5

w=1

Quartimax

Varimax

22

10

00

00

Equamax 00

A'A 23

Indep. Cluster 50

Orthotran 29,

Subjective '43

..,/
.

Direct w=0 31

Oblimln w=.--.5 27

, w=-1 26

Indirect w=0 20

Oblimiji w..5 23

w=1 10

QuartiMax 00

Equamax ,
0

,
A'A'

,4,,

23

Indep. Cluster 44

Orthotran 19

Subjective 19

10k
4

Direct w=0 11

Oblimin w=-.5 11

w=-1 11

23

115

16

13

15

15

26

30

27.

27 .

27 -

10

27

6

17

15

9

-`6

27

27

P

20

47

44

-1

Average
Variable
Complexity

Index

of

Congruence

-

1%61 .96

1.65 .93

1.68 .91

2.01 .75

1.59 - '.95

.2.01_ . .99

1'.53 .79

11.84 .76

.
2.01 .85

1.65 .94 \

1.62 .94 r

:1.57'

.

1.40 .92

1.41 .94

1.41 .'95

1.94 .99

1.41 .97

1.61 .83

1.51 .87

1.52 .89

1.99 ,
.92

1.42 , .81

1.42 -1.00

d
1.43

#
t76 ..97

x.80 .90

/*41 . 81 .92

\y)
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Table Summary (Continued

a

Hyper- ,° Average ' Index
Average plane of

Data transformation Factor r Count Complexity Congruence
. ,

10 IndiriFt =0
.

Oblimin w =% E.

w=1 .

Quartimax
t^

Varimax 3
Equamax

A'A

Indep. Cluster

Orthotran

Subjective

1 Direct w=0

. Oblimin w=-.5

w=-1

Indirect w=0

Oblimin w=.5
r

- w=1

Quartimax

Varimax

Equamax

A'A

,
Indep. Cluster

Orthotran

. Subjective

12 Direct w=0

0blimin...w.-.5
)

,1- w=-1
....

Indirect w=0 ,

Ob)iminf4 w=.5

w-1

QUartimax

Factor Collapse

12 '42

Factor Collapse'
, .

.

1.72

0-

:81

00 -42
,

1j5 .84

00 45 1.76° .437

00 40
4

1.87* .98

08 33. 2.23, '

18 48 1.93 t
16 . 44 1.71 .83

20 55. / ., 2.06
t
_

-

27 72 1.47 s' .95

23 67 1.62. .99

23 .65 1.67 .99

31 41 44- 1.89 .87

Factor COlapse'

Factor Collapse

00 65 1.40 .98 .

00 69 1.44 . ,95

00 49 1.40 .82

18 32' 2.33 .79 , -'

35 66
,
1.42 .88.

11 . 64 41.40 .97

48 87 1.34

18 44 1.51 .83

32 -44 1:53 .78

31 45 1.53 .76

19 **-12 2.24

32 46 1.53 .77

14 6 2.18 .32

00 ,. 36 1,72 .58

21.



Data TransformatiOn

Table 2. Summary (Continued).

Nper,-
Average plane.
Factor r Cou

12 Varimax

Equamax

A'A

Indep. Cluster

Orthotran

Subject

13 Direct w=0

Oblimin w = -.5

w=-1

Indirect w=0

Oblimin w=.5

w=1

Quartimax

Varimax

Equamax -

A'A

Indep. Cluster

Orthotran

Subjective

14 Di re,ct w=0

Oblimin w=.5

wipl

Indirect

Oblimin w=.°5

w=1

Quartimax

Varimax

00

00

26

56

23

18

39

51 ,40

54-N, 4,

13

13 63

/- 12, 63

28 11,.

12 60

11

ob
ic

53

66

00 67

00 70

12 18

26 38

05 65

00 70

20 116

19 112,

19 110

14 59

Factor

Factor

00

00

Collapse

Collapse

101

89

7'

C

Average,
Variable
Complexity

1.85

1.87:

02,10

V50,

1.49

' 1.49

II

1.76

1.76,

1.76

2.62

1.75'

1.94

1r77

'1.78

1.78

1.82 °

1.77

1.83

2.02,

2.04

2:06

2.89

, 2.09

2.35

Index

of
Congruence

-.43

.43

.34

93

.83

.84

--. .84'

.81

:134

.84

.99

.99

,1.00

`1.00

.70

.98

.91

.85

.71

.88

.63



Table 21. Summary (Continued)

Data Transformation

Hyper-
Average plane
Factor r Count

Average

,Variable
Complexity

Index

of

Congruence

14 Equimax 00 80 2.62 .46'

A'A . 18. 63 3.93 .50 D,

Indep. ClOster 42 108
.

1.93 .90

Orthotran 16 111, 2-.01 .87

Subjective 25 );31 .. 1.97.
4

15 Direct w=0 19 '''69 1.26 .93
Oblimin w=-.5 16 68 1.29 .94

w=-1 15 63 1.30 .92

Indirect -w =0 . Factor Collapse
Oblimin w=.5 09 64 1.39 .87

w=1 27 42 1.64 .73

Quartimax 00 53 1.35' .75

Varimax 00 53 1.48 .81

4 Equamax. 00 54 1.49

A'A 134 ''23 1.72 .55

Iffdep..Cluster 23 70 1.24 "\t, .97

Orthotran 26 68 .24 1.00

Subjective 24 4. '.74 1.25

16 Direct w=0 14 148 2.07 .92

Oblimin w=-.5 13 146
.

s 2".15 .96

`w=-1 13 146 2.20 .98

\ Indir:ect w=0 Factor Collapse .

Oblimin w=.5 .09 '157 1.96 .88

w=1 Factor CollapS'e

QUaftimax. 00 131 2.24 .93

Varimax 00 118 2.26 .99

Equamax 00 124 2.43' :90

A'A 11 110 3.50 .79

Indep. Cluster 26 .:

S
149 2.14 .79

Orthotran 18 162 2.01 .85
.

Subjective 28 170 2'.05

23



L.

Table 2. Summary (Continued)

Data Transformation

N Hyper-
- Average plane

Factor r Count

Average
Variable
Complexity

Index

of

Congruende

.17 Direct w=0

Oblimin w=-.&
%

w=-1

35 . 294

14 294

14 . 289'

2.3a

2.38

2.48

.93
1

,

.93 \

.96

Indirect w=0 Factor Collapse -'

Oblimin 'w=.5

w=1

Factor Collapse

Factor Collapse

Quartimax . 00 256 2.61 .81

Varimax 00 268 2.52 .96

Eguamax 00 248 2.75 .71

A'A 13 186 4.78 - :78

Indep. CTuster, 32 280 2.42 .73

Orthotran 16 297 , 2.32 .84

Subjective 13 289 2.60 '-

18 Direct w=0 04 8 1%04 .81

Oblimin w=-.5 03 8 1.04 .81,

w=-1 '02 8 1.04 :81

Indirect w=0 20 8 1.,04 .80

Oblimin w=.5 20 8 1.04 .80

w=1, 00 0 1.98 .63

Quartimax GO- 8 1100 .81

Varimax 00 0 1.98 .63

A'A 19 0
,

1.01 .83

Indep. Cluster' 99 8 .' 1.01 .88

Orthotpan 99t" 3 1.50 .95

Subjective 99 8 1.01

4

24
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error in approximating the subjective solution, was identified. It.was .decided
0

that within each data set all indices Of congruence within 5 percentage points

of the highest index of congruence for that data set would be considered as

b&ing amongst the best congruence values for the set of solutions determined
es

for that given data set, 5 percentage points being an arbitrary but necessary

error band. In Table 3 the 12 blind solutions are summarized with regard to
6

their frequency of defining an adequate solutiOn relative to the subjective

. criterion solutions; as indices of congruence.
vo

Clearly evident in Table 2 is the susceptability of the indirect oblimin,

toward fac.tor collapse, coefficients greaterthan 1.75 in the tettern matrix
.

and factor intercorrelations of 1.00. Although,not reported in Table 2 it was

found that direct oblimin weights that were positive and less than unity,

"

e.g. .5,will also result in frequqnt factor collapse. It would seem that

restricting at,least the direct oblimin weights to zero ar some value less than

zero might serve as a guard against factor collapse. The use of'the orthotran

and Harris and Kaiser models, both models being based upon the orthoblique

equations, will not by definitiod ever result in factor collapse.

For all data sets there were indices of congruence greater than .90. This

wduld suggest that all subjectivelsolutions were reasonable from the perspective

that indeed they could be achieved by a blind transformation solution. However for

some data sets, there'were blind solutions, having a relatively low indexolof

congruence but having a hyperplane count considerably higher-than the other

blind solutions. This would suggest that there may be more than one adequate

solution for'a given data set, at least in terms of hyperplane count (see the

orthotran solution of data set 16).

Harman (1967) has indicated that as the indirect oblimin weight varies from

zero to unity the factors become less correlated. This study presents overwhelm-

Y 25,
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ing evidence contradicting this generalizatiA. When there are two factors`

it appears as though the indirect oblOin weight of unity will always define

an.orthogonal solution. Nowpver, in many of the instances of singularity with

an indirect'oblimin weight of unity the average factor intercorrelation (not

reported) was very high, above .90. This' contradictory evidence can also be

noted in the Table 2 values associated with data sets 2, 9, 12, and 15.

If one'were to plot the blind solutions in the two-space used for,the sub-

jective solutions certain "solution regions" would appear. These solution

regions would represent the domains into which a subjective solution would have

i

to appear in order for the blind procedure defining the domain,to provide an

adequate solution. Thesefregions are bounded by.very irregular lines and seem

only to exist for the poorer blind procedure. This would, suggest that there

are additional dimensions of description for factor solutions that appear to

have an influence on certain blind procedures. Although we note this interest-

ing observation it is not of great consequence because there are blind procedures

Which functioned quite well with the data samples regardless of the data

properties.

No one ortho onal solution showed enough consistency in providing accurate

representation 0 'the subjective solutions to really warrant further consider-
.

ation as.a pragmatic blind transformation procedure. Although it is frequently
4

argued that orthogonal solutions provide an interpretative pictureof the under-

lying factor structure with a poor hyperplane count the results of this study

do, not support this particular argument. The index of congruence does not

really take into account the levels of the only their.pattprns

with regard to those of the subjective solution. Therefore if an orthogonal

solution, regardless of its hyperplane count, provides a'reasonably pod rere-



Table 3. Frequencyi summary of best blind solution relative
to subjeOtive solution.

Percent
Hits

Blind
Procedure Frequency

Direct w=0 8

blimin w=(1.-5 9

8

Indirect w=0 4

Obl imin w=.5

w=1

QuArtipai
Varimax ,

Equamax

A' A

Independent Cl ustet-
Orthotran

1.

4

44

50

44

22

17

11

33

38

22

11

44

8,3

27
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sentation of the patterns of the coefficients in,the subjective solution,

then one would expect a high index of congruence, but thfs occurred for less

than half of the data sets, mainly with those hiving an\average intercorrelation

of approximately Zero.

For 13 of the 18 data sets one or more of the
)

direct oblimin solutions pro-

vided a highly accurate solution. Unfortunately we were unable to determine

either a priori or a posteriori which particular direct oblimin weight would

define either the best solution or the poorest solution. According to the

results presented in Table 3 if one were to,select any particular weight to use

consistently, they would obtain highly accurate solutions, based upon. our data

samples, at best only 50 percent of the time and at worst only 44 percent of

the' time. Alternatively if they were to vary 'the weights from solution to

solution they might obtain an accurate soltuion only 17 percent of the time.

411 The Harris and Kaiser (1964) A'A soltuion appeared to be particularly in

appropriate for the data samples. For a number of data sets it defined extreme-

-ly complex solutions. Alternatively the independent cluster.,model which assumes

variables of unit complexity did comparatively well in defining adequate sol-

utions, whichis probably why it is so popular.

The orthotran solution unlike the rest of the,blind solutions had an over-

whelming tendency, 83 percent of the time, to define a solution that was accur-

ate with regard to the subjective solution.

Conclusions

Several important conclusions seem warranted, however caution must be

exercised with regard to the absolute generalizability of the findings of this

study. Although every attempt was Made teobtain data sample& from a Variety

of sources in order to obtain data representative of the universe of possible

factor soluiibns, we have no guarantee that this was accomplished. A second

k.8
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major limitation of this studs' is that the index of congruence may be a very

rough measure of the fit of a transformed solution to a subjective solution

and the 5 percent range may be an underestimate of the error of this'index.

liertainly it is in order to recommend the totaliiabandonment of the indirect

oblimin solutions. As a group they appear to be highly susceptible to factor

collapse. They also had the lowest frequency of,defining adequate solutions.

The Harris and Kaiser (1964)'A'A solution shogld also be abandoned.

Although it does not'transform to singularity it does tend to transform to

complekity. It defined the most complex solutiontfor 15 of the 181data sets.
..

a

Assuming the 5 percent range.ds appropriate it may be concluded that the
.

1

rthotran solution is the only blind transformation solutibn, of those studied,

that is.'data, generalizable. However until its publication both as a manuscript

(Hofmann, 1975) and as a computer program one should use a. direct oblimin

(Jennrich and Sampson, 1966) solution with aft particular weight. The choice

for the direct oblimin weight should be either zero or negative one-half.
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